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ABSTRACT- An unsteady MHD flow of two viscous immiscible 

incompressible electrically conducting fluids and heat transfer 

through a horizontal channel with isothermal non-conducting 

permeable plates in the presence of transverse magnetic field is 

investigated. The partial differential equations governing the 

flow and heat transfer are transformed to ordinary differential 

equations and closed-form solutions are obtained in both fluids. 

Numerical results for velocity and temperature fields are 

presented graphically and the numerical values of skin-friction 

and Nusselt number have been tabulated. The effect of different 

parameters like viscosity ratio, phase angle, Hall parameter, 

thermal conductivity ratio and Prandtl number on velocity field, 

temperature field, skin friction and Nusselt number are 

discussed.  

Keywords: MHD, isothermal, electrically conducting fluid, skin 

friction, Nusselt number 

I  INTRODUCTION 

    Study of flow through and past a porous medium 

constitutes a comparatively recent development in fluid 

mechanics, with applications in Science, Engineering and 

Technology. More specifically, the existence of a fluid layer 

adjacent to a layer of fluid saturated porous medium is a 

common occurrence in both geophysical and engineering 

environments. Modeling of such systems requires 

understanding of the convective interaction between the fluid 

layer and the adjacent fluid saturated porous medium. Some of 

the geothermal sources e.g. One in the Gulf of California, lie 

very close to the surface and under a body of water. These 

situations may be molded as fluid superposed, porous layers. 

    Packham and Shail (1971) studied stratified laminar flow of 

two immiscible fluids. Soundalgekar and Bhat(1971) 

considered oscillatory MHD flow and heat transfer through a 

channel. Magnetohydrodynamic heat transfer in two phase 

flow between parallel plates was discussed by Lohrasbi and 

Sahai (1988). Zaturska et al. (1988) analyzed flow of viscous  

fluid driven along a channel by suction at porous walls. Two-

dimensional flow of a viscous fluid in a channel with porous 

walls was considered by Cox (1991). Malashetty and Leela 

(1991) investigated magneto hydrodynamic heat transfer in 

two fluid flow. Malashetty and Leela (1992) studied magneto 

hydrodynamic heat transfer in two phase of flow. Berman 

(1993) investigated laminar flow in channels with porous 

walls. Attaia and Kotb (1996) considered MHD flow between 

two parallel plates with heat transfer. Malashetty and 

Chamkha (2000) reported analytical solutions for flow of two 

immiscible fluids in porous and non-porous channels. 

Malashetty et al. (2004) studied fully developed flow and heat 

transfer in a horizontal channel containing an electrically 

conducting fluid sandwiched between two fluid layers. 

Umawathi et al. (2004) considered fully developed flow and 

heat transfer in a horizontal channel containing an electrically 

conducting fluid sandwiched between two fluid layers. 

Umawathi and Mateen (2004) analyzed unsteady two-fluid 

flow and heat transfer in a horizontal channel. Pilecks and 

Socolowsky(2005) considered viscous two-fluid flows in 

perturbed unbound domains. Umawathi et al. (2006) analyzed 

oscillatory Hartman two-fluid flow and heat transfer in a 

horizontal channel. Tsuyoshi and Shu-Ichiro (2008) studied 

two-fluid magneto hydrodynamic simulation of converging hi 

flows in the interstellar medium.  Linga and Sreedhar (2009) 

analyzed unsteady two-fluid flow and heat transfer of 

conducting fluids in channels under transverse magnetic field. 

Magnetic fields for fluid motion were discussed by Weston et 

al (2010). Kumar et al (2012) discussed the unsteady MHD 

free convective flow through porous medium sandwiched 

between viscous fluids. 

II FORMULATION OF THE PROBLEM 

    Consider a two-dimensional unsteady flow of two viscous 

immiscible incompressible electrically conducting fluids 

through horizontal parallel permeable non-conducting plates, 

extending in the *x - and *y - directions in the presence of 

transverse magnetic field of uniform intensity B0 region –

I(o≤ *y ≤h) is filled with a viscous incompressible fluid 

having density 1 , dynamic viscosity 1 , specific heat at 

constant pressure 1pC , thermal conductivity 1 and region -II 

(-h ≤ y ≤ 0) is filled with a different viscous incompressible 

fluid having density 2 , dynamic viscosity 2 , 
specific heat at 

constant pressure 2pC  and thermal conductivity 2 .  

    The flow in both regions of the channel is assumed to be 

fully developed and is driven by a common pressure 
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. Both the plates are maintained at isothermal 

temperatures 1w , 2w  at *y = h, *y = -h, respectively. All 

fluid properties are assumed to be constant. 

Under these assumptions, taking 1 2    and Cp1=Cp2=Cp, 

the governing equations of motion and energy with Hall 

current effects [Jeffery(1961), Bansal (1994) etc. ] are given 

by 

 

Region-1 
*
1

*

v

y




=0,      (1) 

* *
*1 1
1* *

u u

t y

  
      

= -
2 *

2 *1
1 0 1*2

up
B u

x y


 

 
  ,  (2) 

2
* * 2 * *

* 2 *21 1 1 1
1 1 1 0 1* * *2 *p

T T u
C v B u

t y y y

      
                 

 

      (3) 

Region-II 
*
2

*
0

v

y





,     (4) 

,*
2

2
02*

*
2

2

2*

*
2*

2*

*
2 uB

yx

p

y

u
v

t

u



 

































 (5) 

,2*
2

2
0

2

*

*
2

22*

*
2

2

2*

*
2*

2*

*
2 uB

y

u

y

T
k

y

u
v

t

u
Cp  
















































      (6) 

  where 
*u denotes component of fluid velocity along 

*x  -

direction. 
*v denotes component of fluid velocity along *y - 

direction and 
*T is the fluid temperature. The subscripts 1 and 

2 correspond to Region-I and Region-II, respectively. The 

boundary conditions on velocity are the no-slip boundary 

conditions which require that the 
*x -component of velocity 

must vanishes at the wall. The boundary conditions on 

temperature at the walls are isothermal conditions. The 

continuity of velocity, shear stress, temperature and heat flux 

at the interface between the fluid layers at * 0y  is 

considered. 

    The hydrodynamic boundary and interface conditions for 

the two-fluids are given by 
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    The continuity equations of both fluids imply that *
1 and 

*
2 are independent of *y and they can be at most function of 

time alone. 

Here, it is assumed that the transpiration velocity * varies 

periodically with time about a non-zero constant mean 0V  i.e. 

 **
0

* 1 tAeV   , 

where * * *
1 2v v v  , A is a real positive constant, * is a 

frequency parameter and  is small parameter such that  

0 < A ≤ 1. 

III METHOD OF SOLUTION 

Introducing the following non-dimensional quantities  
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Into the equations (2), (3), (5) and (6), we get  
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where Pr is the Prandtl number, r  
is the ratio of viscosities, 

rk is the ratio of thermal conductivities and M is Hartman 

number. 

The corresponding boundary conditions are reduced to  
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Equations (9) to (12) are coupled partial differential equations. 

The velocity and temperature distributions are separated into 

steady and unsteady parts as given below 
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where F stands for 1 2 1 2, ,u u or  .Substituting equation (14) 

into the equations (9) to (12) and equating the harmonic and 

non-harmonic terms, we get 

 

Zeroth-order Equations 
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First Order Equations 
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The corresponding boundary conditions are reduced to 
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Equations (15) to (22) are ordinary differential equations and 

solved under the boundary conditions (23) through straight 

forward calculations, the solution 

     10 11 20, , ,u y u y u y      10 11 20, ,y y y   and 

 21 ,y are known and given by 

  1 2

10 1 2 2
,

m y m y P
u y C e C e

M
  

,
   (24) 

     3 21 2

11 5 6

l il yl il y
u y C e C e


    

 1 2

1 1 2 2
m y m yiA

C m e C m e 


    (25) 

  3 4

20 3 4 2
,

m y m y P
u y C e C e

M
  

,
   (26) 

     4 5 6 5

21 1 8

l il l il y
u y C e C e

 
 

 
 3 4

3 3 4 4
m y m yiA

C m e C m e 


   (27) 

  1 22 2Pr
10 9 10 11 12

m y m yyy C C e A e A e     , 

 
 1 2 11 2

2

13 14 15 2Pr

m m y m y m y P y
A e A e A e

M


     (28) 

     47 48 49 48

11 13 14 56

l il y l il y
y C e C e il

 
   

ymmymymy eilleilleilleil
)(

124123
2

122121
2

120119
Pr

55
2121 )()()(




1 2

125 126 127 128( ) ( )
m y m y

l il e l il e     

1 3 21 1 2 ( )( )
129 130 131 1322( ) 2( )

m l il ym l il y
l il e l il e

  
     

2 3 22 1 2 ( )( )
133 134 135 1362( ) 2( )

m l il ym l il y
l il e l il e

  
   

 
3 21 2 ( )( )

115 116 117 1182 ( ) 2 ( )
l il yl il y

P l il e P l il e


     (29) 

  3 42(Pr/ ) 2
20 11 12 16 17

r m yk y m yy C C e A e A e     

3 4 3 4

2
( )

18 19 20 2

m m y m y m y P y
A e A e A e

M


       (30) 

     137 138 139 138 (Pr/ )
21 15 16 145

r
l il y l il y k y

y C e C e il e
 

    
ymmymym

eilleilleillil
)(

218217
2

216215
2

214213146
4343 )()()(




 
3 4

219 220 221 222( ) ( )
m y m y

l il e l il e     
yillmyillmyillm

eilleilleill
)(

228227
)(

226225
)(

224223
544563543 )()()(




 
4 6 5 4 5( ) ( )

229 230 209 210( ) 2 ( )
m l il y l il y

l il e P l il e
  

   

,)(2
)(

212211
56 yill

eillP


      (31) 

 

where 1i   , A1 and A20, C1 to C16, l1 to l230 and m1 to m4 

are constants and their expressions are not included here for 

the sake of brevity. 

IV SKIN- FRICTION COEFFICIENT 

 Skin-friction coefficient at the lower and upper plates 

is given by 
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Hence, skin friction coefficient at the upper plate in region – I 

is obtained as given below 
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Skin friction coefficient at the lower plate in the region – II is 

obtained as given by 

 3 4

1 3 3 4 4

2
( )

Re

m m
fC C m e C m e

 
    

   278 279 278 279

2
cos sin cos sin

Re
l t l t i l t l t


       

       (34) 

Here l276 to l279 are constants and their expressions are not 

included here for the sake of brevity. 

V NUSSELT NUMBER 

 Nusselt number at the lower and upper plates is given 

by 
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Hence, Nusselt number at the upper plate is obtained as given 

below 
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Nusselt number at the lower plate is obtained as given below 

 1 283 284 285( ) cos sinNu l l t l t        

  285 284cos sini l t l t      (37) 

Here l281 to l285 are constants and their expressions are not 

included here for the sake of brevity. 

VI RESULT AND DISCUSSION 

    Figure 1 shows the immiscible fluids velocity profiles in 

both regions (Regions – I and Regions – II) of the channel for 

different values of the viscosity ratio µr. As µr (ratio of  

viscosity) increase, the velocity decreases in both fluid 

regions. As µr increases, the viscosity of the fluid in the lower 

region becomes thick and hence, the velocity decreases. 

Velocity decreases with the increase in Hall parameter as 

observed from figure 2. 

The effect of phase angle on fluid velocity shows different 

nature in both the regions. In Region-I, fluid velocity 

decreases as phase angle increases upto π/4, but it increases as 

phase angle increases from π/2 to π in Region-II as noted from 

figure 3. 

Fluid temperature decreases when ratio of viscosities increases 

in Region-I, but it increases in Region-II as seen from figure 

4. 
    Figure 5 displays the influence of the thermal conductivity 

ratio r on the fluid temperature profiles in both fluid regions 

of the channel. Increase in the thermal conductivity ratio has 

the tendency to cool down the thermal state in the channel. 

Figures 6 and 7 show that fluid temperature increases with the 

increase in Hall parameter and Prandtl number, respectively. 

Change in phase angle shows mixed effect on fluid 

temperature in both the regions. In Region-I, fluid temperature 

increases with the increase in phase angle when 0 t    

and it starts decreasing when / 2 t    . But in Region-II, 

fluid temperature increases when 0 / 4t   and it starts 

decreasing when / 4 t     as observed from fig 8. 

It is noted from table – 1 that skin-fraction coefficient at the 

upper plate increases with the increase in Hall parameter, 

Prandtl number, r  or µr, while it decreases with the increase 

in phase angle. Skin-friction coefficient at the lower plate 

decreases with the increase in Hall parameter, Prandtl number 

or µr. 

VII CONCLUSION 

1. Fluid velocity decreases in both fluid regions due to 

increase in ratio of viscosities or Hall parameter. 

2. Fluid Temperature decreases in both fluid regions due to 

increase in thermal conductivity ratio and increases with 

the increase in Hall parameter or Prandtl number. 

3. Skin-friction coefficient increases with the increase in the 

ratio of thermal conductivity. 

4. Nusselt number increases with the increase in Hall 

parameter and decreases with the increase in ratio of 

viscosities. 
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Table-1: Numerical values of skin-friction coefficient and Nusselt number at the plates for various values of physical 

parameters when P=5, A=0.1,=5 and =0.01 

M 
Pr 



 


 
Skin friction coefficient Nusselt number 

(C
f

)
1

 (C
f

)
-1

 (Nu)
1

 (Nu)
-1

 

0.5 7 1 1  -24.21558 12.91868 -193.76820 -87.15237 

1 7 1 1  -19.73809 11.09666 -46.41765 -22.38199 

0.5 5 1 1  -1210.75180 645.96502 -198.62176 -65.78132 

0.5 7 0.25 1  -24.21559 12.91867 -192.84184 -87.16544 

0.5 7 1 0.25  -1556.04777 931.66005 -188.10566 -85.04780 

0.5 7 1 1  -1210.74758 645.96406 -199.22585 -80.84488 
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